

Table of Contents
Chapter 1: Introduction	4
1.1	Background and Motivation	4
1.2	Problem Statement	4
1.3	Scope	5
1.4	Project Objectives	5
1.5	Methodology	6
1.6	Solution	7
Chapter 2: Problem Analysis	9
2.1	Problem stakeholders	9
2.2	Main User Groups	9
2.3	Requirements Gathering	10
2.3.1	Interview	10
2.3.2	Online Survey	10
2.3.3	Observation	10
2.3.4	Ethnography	11
2.5	Functional Requirements	11
2.5.1	End User:	11
2.5.2	Co-working Space’s Owner:	12
2.5.3	System Functions	13
2.5.4	General Functions	14
2.6	Non-Functional Requirements	15
Chapter 3: Requirements Modeling	16
3.1	System Architecture Diagrams	16
3.2	Use cases Diagrams	17
3.3	Use case Tables	18
3.3.1	Admin	18
3.3.2	Manager	29
3.3.3	User	30
3.4	 System Context Diagram	38
3.5	Sequence Diagram	39
3.5.1	Sign up	39
3.5.2	Login	41
3.5.3	Booking	42
3.5.4	Booking cancellation	43
3.5.5	Add co-working space	44
3.5.6	Search for place	45
3.5.7	Update profile	46
3.5.8	Add review /comment	47
3.6	Class Diagram	48
3.7	Entity relationship Diagram	49
Chapter 4: Design and Issues:	50
4.1	Covering tools / platforms used:	50
4.2	Issues (Challenges)	50
Chapter 5: System Testing and Evaluation:	51
5.1	Testing:	51
5.2	Planning	52
5.3	Lesson Learnt	53
5.3.1	Technical Skills:	53
5.3.2	Non-Technical Skills:	53
5.4	Future work	54

[image: C:\Users\note book\Desktop\Cubes-V0.pngCubes-V0] Phase II: Final-Year Project Documentation

1

[bookmark: _Toc48023280]Chapter 1: Introduction
1.1 [bookmark: _Toc48023281]Background and Motivation
What is a Co-working Space?
In Google’s dictionary terms co-working is a type of work that includes “the use of an office or other working environment by people who are self-employed or working for different employers, typically so as to share equipment, ideas, and knowledge”.
-Google.
Co-working Space provides individuals or groups with desk space, meeting rooms, shared/private spaces and offices. Allowing them to have a convenient, cost efficient and flexible working environment. It is like a simulation of a real-world office, where you find people from different ages and categories, come to accomplish their needs; students come to study, share ideas or brainstorm, companies/start-ups/student activities make interviews, meetings or give sessions, and so on.
Now, after we have introduced the idea of Co-working spaces, lets discuss how it is commonly used and became very popular nowadays. According to Wikipedia: "Between 2006 and 2015, a few studies have shown the number of co-working spaces and available seats have roughly doubled each year", proving the popularity and demand they gained over the past few years.
With this evolution of such places, it has to exist a system to organize the process internally and externally. Internally where the owner of the space can manage and control the transactions made within the system (CRUD operations, view charts and tables, monitor profit). Externally where we facilitate the process for the end user, when he/she desire to make/cancel a reservation, make comparisons with other spaces, browse, live preview of the system and so on. Thus, we thought to implement a system represented by our Website and Mobile App to help both the owner of the place and the end user, by making the process easy, user-friendly and fun to use.
1.2 [bookmark: _Toc48023282]Problem Statement
Recently, the need for such places for meetings, studying, training courses, interviews, etc. has increased significantly, as we have discussed earlier. As a result, these places were noticeably so crowded.

From The End User Side:
People have to follow traditional ways of communication, whether through the phone or through the use of social media platforms or by the primitive method where they go by themselves to that place inquiring about the place features and services such as: available rooms, prices, capacity, existence of internet connection, white boards, white boards markers and so on. Also, if the user is confused and doesn’t know which place will be suitable for his needs, following the above ways to decide will increase his confusion, beside wasting of time and effort and lack of efficiency.
Furthermore, following these ways prevent or reduce the connection between place and end user, when an emergency situation happens, such as: internet, electricity or water dis-connectivity; which may cause loss of customers, consequently decrease in profits.
From The Place Owner Side:
They suffer from the lack of a regulatory system for booking, especially when there are more than one principal. So, it leads to randomness and chaos. In addition to following same traditional ways of communication with clients. Besides, still depending on paper work, which is a bad and outdated approach and also lack of a system which provides him with graphs or charts to evaluate and monitor place performance.
1.3 [bookmark: _Toc48023283]Scope
· Developing a web application for both end user and owner.
· Developing a mobile application for end user.
· We are targeting people that most interested in co-working spaces like students, startups, student activities groups.
1.4 [bookmark: _Toc48023284]Project Objectives
· Enabling the user to be open to many coworking spaces as he wishes, from only one place (our system).
· Regarding Usability Goals:
· ”is the ease of use and learnability of a human-made object such as a tool or device”.
· Efficient and Effective to use.
· Safe to learn.
· Easy to learn.
· Easy to remember how to use.
· User friendly interface.

· Regarding User Experience goals (UX):
· ” The way people feel about it and their pleasure and satisfaction when using it”. The user will find the system:
· Fun.
· Satisfying.
· Enjoyable.

· Regarding Functionality goals:
· Facilitate the reservation process.
· Provide real-time coverage of the condition of the place.
· Facilitate the search process for places.
· Recommend similar places to user based on certain criteria.
· Provide administrative features for the place owner in order to evaluate place’s performance.

· Meeting users’ mental models.
· Regarding Critical Success Factors (CSF) :
· 80% of site visitors complete a reservation.
· 90% Ensure happy and satisfied users.
· 50% Recommend the app/website to a friend.
· 60% Use it again and not go to other competitors.

· Say goodbye to routine paperwork.
1.5 [bookmark: _Toc48023285]Methodology
We use agile model as our life cycle ,because Agile software development describes an approach to software development under which requirements and solutions evolve through the collaborative effort of self-organizing cross-functional teams and their customer(s)/end users(s).It advocates adaptive planning, evolutionary development early delivery, and continuous improvement, and it encourages rapid and flexible response to change, This include the following sprints:

[image:]Project Introduction
· Identify the problem
· Identify the objective
· Identify project scope
· Stakeholders
· Project planning
Project Analysis
· Identify functional requirements
· Identify non-functional requirements
· Identify use case diagram
· Identify class diagram
· Identify sequence diagram
Development
We Divide our project into sprints in each sprint we
· Clarify the detailed requirements for each sprint
· Analysis
· Design
· Implementation
· Testing
· Integration
1.6 [bookmark: _Toc48023286]Solution
Considering the given inputs and real-life problems we have discussed earlier in problem statement, we thought it is better to implement a system which helps both the owner of the place and also the end user visiting these places.
This system provides us with an online reservation system, enabling the user to easily do the basic operations of reservation process, without the obligation of searching Google or Facebook to browse or communicate with these places. In our case, we will make these operations as easy as possible and at one place; the user may search, browse, compare, reserve, add review, communicate with the place through our website. In other words, we will enable the user to be open to many co-working spaces as he wishes, from only one place, so guaranteeing fun and easy UX and fatigue free.
On the other side, We didn’t forget the owner of the place, and how much his mission is hard and important ; So we decided to engage some features that mean to him and will ease his work; as providing him with a dashboard to control and monitor the work flow, also showing graphs and charts representing some aspects as performance, traffic, sales, websites’ visitors and so on.

[bookmark: _Toc48023287]Chapter 2: Problem Analysis
2.1 [bookmark: _Toc48023288]Problem stakeholders
· The Co-working space communities that are providing the services to the user in actions, that will interact with our system to register a new co-work space.
· Users: Normal users that will interact with the system to reserve a place in the chosen co-work space and many other functionalities, they can be categorized as students, student activity groups, start-ups companies doing some interviews, normal users doing their stuff and so on…

2.2 [bookmark: _Toc48023289]Main User Groups
Customer				
Co-working Space Admin			
Co-working Space Manager

	Characteristics
	Customer
	Co-working Space Admin
	Co-working Space Manager

	Age / gender
	50%male- 50% female
18-25
	75% male-25% female
20-30
	50% male-50% female
20-30

	Education
	Med
	Med
	Med

	language
	Arabic
	Arabic
	Arabic

	Computer / web experience
	Med
	Med
	Med

	Task knowledge
	First week: Low to Med then Med to High
	First week: Low to Med then Med to High
	First week: Low to Med then Med to High

	Expectation
	Ease of use
	Ease of use
	Ease of use

2.3 [bookmark: _Toc48023290]Requirements Gathering
2.3.1 [bookmark: _Toc48023291]Interview
To get the real requirements that the actual user needs for the system and in our case is the owner of the co-working space, office Admin.
1. What problems do you face every day in managing the place?
2. What do you think is the reason for these problems?
3. How bookings are recorded?
4. What factors do you consider for making a particular offer?
5. What if there is a system to help you to manage the place and book reservations easily?
6. Now I can show him the proposed features of that system to make sure its priority for him.
2.3.2 [bookmark: _Toc48023292]Online Survey
To get all views of the largest number of users in less time.
1. Do you use the co working spaces?
a) A lot
b) Little
2. If there is a reservation system for those places that make it easier for you to book, what would you prefer?
a) Website
b) Mobile APP
3. Why did you choose that choice?
4. Do you want to a particular addition in this system?
2.3.3 [bookmark: _Toc48023293]Observation
- To understand the task that person is doing in the place and the problems he faces every day.
- An Example of observation guide framework:
Who: Office Admin?
Where: Co working space?
What: The process of receiving and recording reservations?
- What is his role?
- How to receive bookings?
- What is used to record this data?
- What is the complexity of this process?
2.3.4 [bookmark: _Toc48023294]Ethnography
- To be able to understand system users deeply as the experiment is the best thing to learn.
- It is possible to have this experience by working a team member for a day or more in those places to understand the life cycle of booking process, the user's needs and problems they are face every day.
2.5 [bookmark: _Toc48023295]Functional Requirements
2.5.1 [bookmark: _Toc48023296]End User:
· Make Reservation
· User opens desirable co-working space and selects the best fit asset for him\here like meeting room, private office etc.
· User enters booking data such as duration, starting time, end time, number of people and confirm booking.
· Cancel Reservation
· User can cancel or delete his reservation after some period of time defined by co-working owner.
· Make Payment
· User is allowed to pay online or cash, in case of credit card user enters his\her payment information.
· Review Co-working Space
· User is able to review or rate co-working spaces.
· Search for Co-working Space
· User is able to search for co-working spaces by name, address.
· View available offers
· User can view available offers for co-working spaces.
· View Co-working Space on Map
· User can view the selected co-working space on map.

· Add Co-working space
· User can add his own co-working space by providing the required co-working data like location, name, features and assets etc.
· Update Profile Settings
· User can update his profile settings like changing name, address, email, password or any other attributes.
· View Booking History
· User can view his\her booking history over time across the system.
· Customer Support
· User can send complain issue to specific co-working space or about the system in general.
2.5.2 [bookmark: _Toc48023297]Co-working Space’s Owner:
· Verify Reservation
· Admin can verify reservation in case of cash payment by user.
· Delete Reservation
· Admin can delete some reservations.
· Retrieve Reservations
· Admin can retrieve new, history, canceled reservations for further operations.
· Manage forecasting next month requests
· A data mining model that helps owner forecasting next month booking request by selecting training data range and resource.
· View monthly profit
· Admin can watch profit and number of booking requests tracking divided monthly.
· Send Email to User
· Admin can send email to end user about his\her reservation for further details.
· Add New Current View
· Admin can add a view of his\here co-working space at the current state through images.
· Manage Co-working Desks
· Add: Admin can add a new seating to his\here co-working space like meeting or private by entering capacity, price, type etc.
· Retrieve, Update, delete seating.
· Manage Equipment
· Add: Admin can add equipment to his\her co-working space through its attributes name, description like Printer, kitchen etc.
· Retrieve, Update, delete equipment
· Manage Facilities
· Add: Admin can add a facility to his\her co-working space through its attributes name, description like skype room, relax zone, parking zone etc.
· Retrieve, Update, delete facilities
· Manage Offers
· Add: Admin can add new offers or promotions on his\here place resources like meeting rooms, private offices etc. through its attributes date, start time, end time, discount rate, description.
· Retrieve, Update, delete offers including expired and coming.
· Close current available offer.
· Manage Posts
· Add: Admin can post to public which will be seen by users to facilitate social community.
· Retrieve, Update, delete Posts filtered by latest posts.
· Manage Reviews
· View all reviews about the place to listen to the end users issues.
· Delete reviews
· Reply to reviewers by sending them an email.
· Manage Opening Times
· Add: Admin can add new opening time for the place by entering day, from, to data.
· Retrieve, Update, delete opening times of the place
· Manage Support Issues
· Reply: Admin can reply to end user complaining about some issues through sending an email to them with solutions.
· Retrieve, delete support emails history.
· Manage Blocked Users
· Block User: Admin can block user who book several times and didn’t come from reservation again to his\her co-working space.
· Unblock User: unblock user after certain amount of time.
· Retrieve all blocked users.		
· Update Profile Settings.
· Disable Co-working Profile.
2.5.3 [bookmark: _Toc48023298]System Functions
· Classify booking request
· Automatically System will classify upcoming booking requests to if really the booking’s user will come or not and showing its probability.	
· Show Statistic Charts
· System gives to the co-working’s owner insights about his place behavior like chart about each month and the corresponding number of bookings in that month.
· A chart explaining booking requests current year divided monthly.
· A chart explaining the most booked assets.
· A chart explaining the most frequent areas people book from.
· A chart explaining profit of current year divided monthly.
· A chart comparing profit for current and last year divided monthly.
· A chart explaining the top 10 booked users.
· A chart explaining the most frequent booked user’s ages.
· Show nearest co-working Spaces
· System will show to the user the nearest co-working space that may best fit for him/her.
· Show newest Added Spaces
· System will show the newest added co-working spaces to users to explore them.
· Calculate Booking Cost
2.5.4 [bookmark: _Toc48023299]General Functions
· Sign Up (End User)
· User can sign up to the system by entering his\her data like name, email, password, address, age, gender.
· Login (End User)
· User can login to the system by entering his\her	email and password.
· Login (Admin)
· Admin can login to the system by entering co-working’s email and password.
· Logout (End user and Admin)
· End user and Admin both can logout to the system.

2.6 [bookmark: _Toc48023300][bookmark: _Hlk48007796]Non-Functional Requirements
Usability
· [bookmark: _Hlk47566386]Our system will be easy to use by choosing simple mock-up, and we will enhance interface by taking feedback from Stakeholders.
· Reach any function in minimum number of clicks (3 for example).
· System will delay for any reason, we will produce message to user telling him to wait.
· Button in interface will have Symbols that show the function of that button.
Reliability
· System will handle wrong inputs from stakeholders by 100% every input from user will be checked.
· System should identify the co-working space’s location on map correctly.
· Percentage of failure will be less than 20%.
Performance
· Response time: maximum operation time will be 1: 30 seconds.
· Scalability: The system will be accept new featured that we would add in future easily and we will cover large scale of places.
· The System uses queues to handle the increasing workloads.
· Availability: The system will be available 24 hours a day.
Supportability
· System can be adapted to different environments and configurations.
· Programmers can add new features and test it no more than one week.
· System will be down for maintenance less than 24 hour.

[bookmark: _Toc48023301]Chapter 3: Requirements Modeling
3.1 [bookmark: _Toc48023302] System Architecture Diagrams
[image: sys arch]

[image: C:\Users\note book\Desktop\86266701_3479125835491408_8109280000131203072_n.png86266701_3479125835491408_8109280000131203072_n]
3.2 [bookmark: _Toc48023303]Use cases Diagrams

3.3 [bookmark: _Toc48023304]Use case Tables
3.3.1 [bookmark: _Toc48023305]Admin
Login
	Use Case ID
	#

	Use Case Name
	Log in.

	Brief Description
	Admin logs in to the System.

	Actor(s)
	Administrator of the place.

	Pre-Conditions
	Already a logged-in admin and have access to this place.

	Post-Conditions
	Logged in to the system successfully.

	Flow Of Events
	Admin Action
	System Action

	
	
1-Admin enters login information

	

2-The system accepts the login information

3-Checks login information in the database.

	Exceptions
	Admin Action
	System Action

	

	1-Admin enters invalid information
	
2- System refuses login process, and requests user to try again.

Log out
	Use Case ID
	#

	Use Case Name
	Log Out.

	Brief Description
	Admin logs out from the System.

	Actor(s)
	Logged in Admin.

	Pre-Conditions
	Already a logged-in admin.

	Post-Conditions
	Logged out from the system successfully.

	Flow Of Events
	Admin Action
	System Action

	
	1-Admin clicks on “Log Out”.

3-Admin confirms he/she wants to log out.

	

2-System displays a prompt asking if the user indeed wishes to logout.

4-System returns the user to log in screen and the session is deleted.

	Exceptions
	Admin Action
	System Action

	
	
	

Manage Reservation (Add Reservation)
	Use Case ID
	#

	Use Case Name
	Add Reservation.

	Brief Description
	The admin adds a reservation.

	Actor(s)
	Administrator

	Pre-Conditions
	Logged in account -> Reservations -> Add.

	Post-Conditions
	A reservation is added successfully.

	Flow Of Events
	Admin Action
	System Action

	
	1-Admin clicks on “Reservations ” , then “Add” button.

3-Admin fills in the reservation form based on user input.

6-Clicks on “Done”.
	

2- The system shows a reservation form to be filled by admin.

4- System adds this reservation to database.

5- “Done” prompt.

	Exceptions
	Admin Action
	System Action

	
	1-Admin enters invalid information
	
2- System refuses admin’s addition process, and requests admin to try again.

Manage Reservation (Add User Extended from Add Reservation)
	Use Case ID
	#

	Use Case Name
	Add User.

	Brief Description
	The admin adds user to the system.

	Actor(s)
	Administrator

	Pre-Conditions
	Logged in account -> Users-> Add.

	Post-Conditions
	A user is added successfully.

	Flow Of Events
	Admin Action
	System Action

	
	1-Admin clicks on “Users” , then “Add” button.

3-Admin fills in the addition form based on user input.

6-Clicks on “Done”.
	

2- The system shows sign up form for user.

4- System adds this user to database.

5- “Done” prompt.

	Exceptions
	Admin Action
	System Action

	
	
	

Verify Reservation
	Use Case ID
	#

	Use Case Name
	Verify Reservation.

	Brief Description
	The admin verifies a reservation request.

	Actor(s)
	Administrator

	Pre-Conditions
	Logged in account -> Reservations.

	Post-Conditions
	Verify reservation request successfully.

	Flow Of Events
	Admin Action
	System Action

	
	1-Admin clicks on “Reservations ” button.

3-In case of true reservation (The users truly came), The admin clicks on “Confirmed”

	

2- The system shows a table of reservations (if found).

4- System confirms this reservation.

	Exceptions
	Admin Action
	System Action

	
	1-In case of False Reservation
	

2- Use case # Block User (extended from Verify Reservation)

Block User (extended from Verify Reservation)
	Use Case ID
	#

	Use Case Name
	Block User.

	Brief Description
	The admin block a user with false reservation.

	Actor(s)
	Administrator

	Pre-Conditions
	Logged in account -> Reservations.

	Post-Conditions
	Verify reservation request successfully.

	Flow Of Events
	Admin Action
	System Action

	
	1-Admin clicks on “Reservations ” button.

3-In case of false reservation (The users didn’t show up until some time), The admin clicks on “Destroy Reservation”

	

2- The system shows a table of expired reservations (if found).

4-System destroys this reservation.

5-System makes this reservation time/room available again.

	Exceptions
	Admin Action
	System Action

	
	
	

Manage Facilities(CRUD)
	Use Case ID
	#

	Use Case Name
	Manage Facilities.

	Brief Description
	The admin manages Facilities of the place.

	Actor(s)
	Administrator

	Pre-Conditions
	Logged in account -> facilities.

	Post-Conditions
	Facilities is read/added/updated/deleted successfully.

	Flow Of Events
	Admin Action
	System Action

	
	1-Admin clicks on “Facilities” tab.

3-If Admin clicked on:
1) Add

 2) Update

 3) Delete
	

2- The system lists all Facilities, with 3 options (add , update , delete).

4-Facilities is added to database and to the list.

5-Facilities is updated in database and to the list.

6-Facilities is deleted from database and from the list.

*Are you sure? Prompt is shown after each process.

	Exceptions
	Admin Action
	System Action

	
	
	

Manage Announcements (CRUD)
	Use Case ID
	#

	Use Case Name
	Manage Announcements .

	Brief Description
	The admin manages Announcements of the place .

	Actor(s)
	Administrator

	Pre-Conditions
	Logged in account -> Announcements .

	Post-Conditions
	Announcements is read/added/updated/deleted successfully.

	Flow Of Events
	Admin Action
	System Action

	
	1-Admin clicks on “Announcements ” tab.

3-If Admin clicked on:
1) Add

 2) Update

 3) Delete
	

2- The system shows Announcements list, with 3 options (add , update , delete).

4-Announcements is added to database and to the list.

5-Announcements is updated in database and to the list.

6-Announcements is deleted from database and from the list.

*Are you sure? Prompt is shown after each process.

	Exceptions
	Admin Action
	System Action

	
	
	

Manage Events (CRUD)
	Use Case ID
	#

	Use Case Name
	Manage Events.

	Brief Description
	The admin manages Events of the place.

	Actor(s)
	Administrator

	Pre-Conditions
	Logged in account -> Events.

	Post-Conditions
	Events is read/added/updated/deleted successfully.

	Flow Of Events
	Admin Action
	System Action

	
	1-Admin clicks on “Events ” tab.

3-If Admin clicked on:
1) Add

2) Update

 3) Delete
	

2- The system shows Events list, with 3 options (add , update , delete).

4-Events is added to database and to the list.

5-Events is updated in database and to the list.

6-Events is deleted from database and from the list.

*Are you sure? Prompt is shown after each process.

	Exceptions
	Admin Action
	System Action

	
	
	

Update Profile Settings
	Use Case ID
	#

	Use Case Name
	Update Profile Settings.

	Brief Description
	The admin updates profile settings.

	Actor(s)
	Administrator

	Pre-Conditions
	Logged in account -> Profile Settings.

	Post-Conditions
	Profile settings is updated successfully.

	Flow Of Events
	Admin Action
	System Action

	
	1-Admin clicks on “Profile Settings” button.

3- Admin clicks on “Update” button.

5-Admin fills in updates.
	

2- System shows profile of place to user with “Update button”.

4-Input field is shown to user.

6-System checks its validity.

7-Adds updates to database.

	Exceptions
	Admin Action
	System Action

	
	
	

Find(Search) User
	Use Case ID
	#

	Use Case Name
	Find User.

	Brief Description
	The admin finds user.

	Actor(s)
	Administrator

	Pre-Conditions
	Logged in account -> Find User box.

	Post-Conditions
	Retrieve searched user profile.

	Flow Of Events
	Admin Action
	System Action

	
	
1-Admin enters User ID/Name into the Find User Box.

	

2- The system displays results

	Exceptions
	Admin Action
	System Action

	
	
	

3.3.2 [bookmark: _Toc48023306]Manager
	Use Case ID
	#

	Use Case Name
	Add new Co-working space.

	Brief Description
	An administrator of the System adds a new Co-working space to the database.

	Actor(s)
	Administrator / Normal User.

	Pre-Conditions
	Logged in user -> Add new space.

	Post-Conditions
	A new co-working space is added successfully.

	Flow Of Events
	User Action
	System Action

	
	1-Login
2-Add new space

4-User adds space’s information

	

3-System confirm new space

5- System approves a new space and adds it to the database after checking it's data

	Exceptions
	User Action
	System Action

	
	1 A user enters invalid information
	

2- The system refuses to add process, and requests user to try again.

3.3.3 [bookmark: _Toc48023307]User
	Use Case ID
	#

	Use Case Name
	Sign Up.

	Brief Description
	A user of the system creates an account.

	Actor(s)
	Guest.

	Pre-Conditions
	Internet-connected and Opening website/app.

	Post-Conditions
	A new account is created successfully.

	Flow Of Events
	User Action
	System Action

	
	1-User clicks on Create new account

3-User enters registration information

The 5-Home page is shown to the user.
	

2-System confirms a new user

4- System approves a new user and adds it to the database after checking it's info.

	Exceptions
	User Action
	System Action

	
	1-User enters invalid information
	
2- The system refuses to create a new account process, and requests user to try again.

	Use Case ID
	#

	Use Case Name
	Log in.

	Brief Description
	A user of the System logs in to the System.

	Actor(s)
	Logged in user.

	Pre-Conditions
	Already a logged-in user.

	Post-Conditions
	Logged in to the system successfully.

	Flow Of Events
	User Action
	System Action

	
	1-User enters to log in info.

The 4-Home page is shown to the user.

	

2 The system accepts the login info.
3 Checks log in info in the database.

	Exceptions
	User Action
	System Action

	
	1-User enters invalid information
	
2- System refuses to log in process, and requests user to try again.

	Use Case ID
	#

	Use Case Name
	Log Out.

	Brief Description
	A user of the System logs out from the System.

	Actor(s)
	Logged in user.

	Pre-Conditions
	Already a logged-in user.

	Post-Conditions
	Logged out from the system successfully.

	Flow Of Events
	User Action
	System Action

	
	1-User clicks on Log Out.

3-User confirms he/she wants to log out.

	

2-System displays a prompt asking if the user indeed wishes to logout.

4-System returns the user to log in screen and the session is deleted.

	Exceptions
	User Action
	System Action

	
	
	

	Use Case ID
	#

	Use Case Name
	Search.

	Brief Description
	A user searches about a place.

	Actor(s)
	Guest/ Logged in user.

	Pre-Conditions
	

	Post-Conditions
	Showing results matching his/her preferences/filters.

	Flow Of Events
	User Action
	System Action

	
	

2-User enters search criteria and submits.

	1-The system displays the search submission box

3-The system displays results

	Exceptions
	User Action
	System Action

	
	
	

	Use Case ID
	#

	Use Case Name
	Book.

	Brief Description
	A user wants to book a chair/room/area or whatever.

	Actor(s)
	Logged in user.

	Pre-Conditions
	Logged in user.

	Post-Conditions
	The booking process is done successfully.

	Flow Of Events
	User Action
	System Action

	
	1-User enters some place’s profile on the system.

3-User clicks on the "Book" button.

5-User enter booking details.

8-User confirms the booking.
	

2-System shows the place's profile to the user.

4- System displays a prompt asking users to enter more booking details.

6-System checks entered booking info.
7-System asks the user to confirm the booking.

9-System adds booking details in the database and assign it to that user.

	Exceptions
	User Action
	System Action

	
	1-User is not logged in to the system.

3- If the user is already logged in, enter login info.

4- If not, he/she is redirected to Sign up page.

	

2-System displays a login prompt and "don't have an account yet"

5-System redirects the user to Sign up page.

	Use Case ID
	#

	Use Case Name
	Add comment

	Brief Description
	A user of the System adds a new comment on a specific co-working space

	Actor(s)
	User

	Pre-Conditions
	Logged in user -> search about place -> open profile -> add comment

	Post-Conditions
	A new comment is added successfully

	Flow Of Events
	User Action
	System Action

	
	1-Login
2-Search about place

4-User opens the place profile

6-User click to add a comment and enter his words
	

3-System shows a list of results

5-The system shows the place details

7-System add his comment successfully

	Exceptions
	User Action
	System Action

	
	4 User doesn’t enter words and need to add his comment
	
2- System make the add button disabled until the user enters words.

	Use Case ID
	#

	Use Case Name
	Add review

	Brief Description
	A user of the System adds a new comment on a specific co-working space

	Actor(s)
	User

	Pre-Conditions
	Logged in user -> search about place -> open profile -> add review

	Post-Conditions
	A new review is added successfully

	Flow Of Events
	User Action
	System Action

	
	1-Login
2-Search about place

4-User opens the place profile

6-User click to add review
	

3-System shows a list of results

5-System shows the place details

7-System adds his review successfully

	Exceptions
	User Action
	System Action

	
	1-User doesn’t enter words and need to add his comment
	
2- System make the add button disabled until the user enters words.

	Use Case ID
	#

	Use Case Name
	Cancel booking

	Brief Description
	A user of the System adds a new comment on a specific co-working space

	Actor(s)
	User

	Pre-Conditions
	Logged in user -> search about place -> open profile -> add review

	Post-Conditions
	A new review is added successfully

	Flow Of Events
	User Action
	System Action

	
	1-Login
2-Enter his profile and choose bookings from the menu list

4-User click on the booking that he wants to cancel and click cancel

	

3-System shows the list of bookings

5-System remove that booking

	Exceptions
	User Action
	System Action

	
	1-User need to cancel a booking after the valid period for making this action had been passed
	

2- System displays a message
According to reservation policy

3.4 [bookmark: _Toc23806492][bookmark: _Toc48023308][image: 86266504_500096910697309_90373864323809280_n] System Context Diagram

3.5 [bookmark: _Toc48023309][bookmark: _Toc47893009] Sequence Diagram
3.5.1 [bookmark: _Toc48023310]Sign up
[bookmark: _Toc48009592][bookmark: _Toc47893010][image: SignUp]

[image: SignUp validation]
3.5.2 [bookmark: _Toc47893011][bookmark: _Toc48023311]Login

[bookmark: _Toc47893012][image: LogIn]
3.5.3 [bookmark: _Toc48023312] Booking
[image: book]

3.5.4 [bookmark: _Toc47893013][bookmark: _Toc48023313]Booking cancellation
[image: cancel book]
3.5.5 [bookmark: _Toc47893014][bookmark: _Toc48023314]Add co-working space
[image: add space]

3.5.6 [bookmark: _Toc47893015][bookmark: _Toc48023315]Search for place
[image: search by city]
3.5.7 [bookmark: _Toc47893016][bookmark: _Toc48023316]Update profile
[image: update profile]

3.5.8 [bookmark: _Toc47893017][bookmark: _Toc48023317]Add review /comment
[image: comment]

3.6 [bookmark: _Toc48023318][image: class diagram]Class Diagram

3.7 [bookmark: _Toc48023319][image: ERD]Entity relationship Diagram

[bookmark: _Toc48023320]Chapter 4: Design and Issues:
4.1 [bookmark: _Toc48023321]Covering tools / platforms used:
· [bookmark: _Toc48020611][bookmark: _Toc48021249][bookmark: _Toc48022004][bookmark: _Toc48023322]Mobile Development:
· Android Studio, Visual Studio,
· [bookmark: _Toc48020612][bookmark: _Toc48021250][bookmark: _Toc48022005][bookmark: _Toc48023323]Web Development:
· Brackets, PHP Storm, Sublime, Visual Studio
· [bookmark: _Toc48020613][bookmark: _Toc48021251][bookmark: _Toc48022006][bookmark: _Toc48023324]Other:
· GitHub
· Trello
· Zoom
4.2 [bookmark: _Toc48023325]Issues (Challenges)
· [bookmark: _Toc48020615][bookmark: _Toc48021253][bookmark: _Toc48022008][bookmark: _Toc48023326]Lack of sufficient Data – needed for Data Mining.
· [bookmark: _Toc48020616][bookmark: _Toc48021254][bookmark: _Toc48022009][bookmark: _Toc48023327]Lack of resources/tutorials of some frameworks which lead us to abandon it and find an alternative ex: Flutter, …
· [bookmark: _Toc48020617][bookmark: _Toc48021255][bookmark: _Toc48022010][bookmark: _Toc48023328]Lack of free online servers to upload our work on it.
· [bookmark: _Toc48020618][bookmark: _Toc48021256][bookmark: _Toc48022011][bookmark: _Toc48023329]Because of lockdown, we couldn’t compile work at one place.
· [bookmark: _Toc48020619][bookmark: _Toc48021257][bookmark: _Toc48022012][bookmark: _Toc48023330]Choosing right and suitable framework.
· [bookmark: _Toc48020620][bookmark: _Toc48021258][bookmark: _Toc48022013][bookmark: _Toc48023331]Connecting backend API with Mobile.
· [bookmark: _Toc48020621][bookmark: _Toc48021259][bookmark: _Toc48022014][bookmark: _Toc48023332]Because of Corona and lockdown, we couldn’t perform some types of tests as:
· acceptance test

[bookmark: _Toc48023333]Chapter 5: System Testing and Evaluation:
5.1 [bookmark: _Toc48023334] Testing:
 Originally test plan was put in the very beginning of the project, in fact it is divided into parts, first one is local testing; which is done among us as: unit testing, then integration testing when we compile work, System testing when all the parts are gathered together, also let’s not forget the testing done with our Dr and TA , who were considered as our backend users and consultants over the year. Second one is global testing I.e. test on real world (real users) as acceptance testing, but unfortunately, we couldn't do that as we’ve mentioned above, but since we communicated with real users from real world as we’ve talked in Chapter 2: Problem Analysis that made us nearly close to end users and understand their needs not ours.

5.2 [bookmark: _Toc48023335][image:]Planning

[image:]

5.3 [bookmark: _Toc48023336] Lesson Learnt
5.3.1 [bookmark: _Toc48023337]Technical Skills:
· PHP
· Laravel
· Mysql
· Javascript
· Restful API
· HTML5, CSS3, SCSS
· Xampp server
· React Native
5.3.2 [bookmark: _Toc48023338]Non-Technical Skills:
· Communication skills
· Documenting skills
· Work remotely from each other
· Adapt to circumstances
· Get familiar with how work is done in market
· Work in Mini company
· Requirements Analysis
· Data gathering techniques
· Get familiar with Agile methodology and following it
· Get familiar with sprints concepts
· Team working
· Tasks distribution
· Time planning
· Planning
· Testing techniques
· Problem solving
· [bookmark: _Toc402452676]Decision making

5.4 [bookmark: _Toc48023339] Future work
· [bookmark: _Toc48020629][bookmark: _Toc48021267][bookmark: _Toc48022022][bookmark: _Toc48023340]Online Payment:
· Pay online with different methods
· [bookmark: _Toc48020630][bookmark: _Toc48021268][bookmark: _Toc48022023][bookmark: _Toc48023341]Paypal
· Credit card/Visa
· Fawry
· [bookmark: _Toc48020631][bookmark: _Toc48021269][bookmark: _Toc48022024][bookmark: _Toc48023342]Recommendation Module:
Willing to build and develop efficient and valuable recommendation module that adds a value to the existing solution and provides satisfied customer experience for system users throw their behavior and catching every action from them as a result recommending the best fit co-working spaces for a user.
· [bookmark: _Toc48020632][bookmark: _Toc48021270][bookmark: _Toc48022025][bookmark: _Toc48023343]Deploying Solution:
Willing to go further with the last step by deploying the developed solution to production on a live server to be accessed by public.
· [bookmark: _Toc48020633][bookmark: _Toc48021271][bookmark: _Toc48022026][bookmark: _Toc48023344]User location detection:
Based on GPS technology, System will detect the nearest co-working space to the current user location and notify user regarding available offers at that co-working space.
image2.jpeg

image3.png
User Profile
View

Co-working Statistical
View Charts
View

Create
. 5 Co-working
Booking View Vievs

Profile
Controller

Layer

Observer
Controller

Booking
Controller

Analysis
Controller

Co-working
Database

image4.png

image5.jpeg

image6.png
send Data
verify Data ()

[T No duplicate]
view HOME PAGE

[it there s dupiicate]

display me:

image7.png
Actor

send Data

[If Data Entered Completely]

[If Data Entered Correctly]

image8.png
ST s

User glick on Sign in button

Enter Username & Password

Send Username & Password
search for Username

validate Password

alt
[If Exist] c____retumTRUE______ 1

image9.png
A

Actor

click on Book button

Make
booking()
add
reservation

send data

add in database

refum frue
view message retum_true.

ull,

image10.png
Actor
lick on Cancel_Booking button

Cancel
booking()
Gelete
reservation

delete from database

view message
successfully cancelled

image11.png
show Space()__

image12.png
search in records

click on Search field/button
choose city/name

Actor

[if not exist]

image13.png
ate.

show_data to upd:

E
3
E
E
</
q
o
ol
B
&
2

image14.png
Actor

click on Comment field

write Comment and submit

send data Review

add in database

retum_true.

view_ comment.

image15.tiff
Q a a il

& CustomerSupport

GoiD: It
“Usar D! nt

+ SendlsusRequestiRequest ssueDate}: Sting
+ ReplyToCustomer(nt Userid) Notfcation=Email
+ deleelssue(int Issusld)void

Event

~CotDiInt
“Hoadiing: Sting
“Descriplion: String

- SaciType: Siting
“Stor time: Date.
“End_Time: Date
~Tags: Strng
~FrooOrPaied Booloan
prie: Dauble

+ AUEvan(Rocuss EvanlData): Strng
+ EciEvent(nt Co i6, It EventiD): View

+ DeleteEuent(nt Co_d, In EventlD}: String
+ GetIEvenis(Int Co.la) List<Events>

+ EndedEvent(in Ga) Srng

Int Co_d. In EventlD. Int UserlD: String
 CancalAsandngEvantint o.i. it EvaruD. nt Use 0

LivoProview

o INT

+ AddLivePreview(int Co_id]void

+ getUpeomingBookings{Coworkingld) List<Booking>
+ getCumentBookingForCoSpace(int Co_idy List=Booking>

+ AddUser(Request UserData: Sting

+ EdiUser(int D) Sting
+DlsteUsor(ntID): Sting

+ GolUsor(ntID}: Usor

+ VeriiyUser(Reguost UserDatal: Sving
+ AddToFavourites(Co_dvold

“brandingStato: Sring

RoviewController

~Userigznt
~Spacelin

+ AddSpace(Request SpaceData): Sirng
+ EciSpaceaininolint ID}: View
+DoiolsSpacoint ID}: Sirng

+ GotSpaca(lnl D)- Spaco

+ VerifySpace(Request SpaceDala]: Sting
2 UndisOparintours(0 View

+ ReviewSpacelint Spaceld, Int userld; Sting
+DeleteRoview(n Spacel, it e} Siing
Reviewld) void

L Dkemodantin Revonid) v
+ GotAIRoviosForSpacolnt spaceld)
List<Revisws>

+EdiRaview(int Reviewld) Review

Co_1D): €O space

& Blosker

= blockUser(int Coworkingl, Int user_id): Notfcation<Email>
= UnblockUsor(nt Goworkingle. In usor_id | Notlfeation<Eimail
 gelAlBlockedUsers{ Inl Comerkingld . List<Usars>

- dsatieCoworkingProfie(int co id)vaid
- enableConorkingPofie(int oo id)void

CoworkingNews

+ addPost(nt Coworkingld) void
+ editPost{int Coworkingld) void

+ celetePost{ It Coworingld) void

+ geAIPosts(ntco_Id)List=Posts>

+ golComments(in co_i, Int post_d}List<Conmonts>

+ GetAlintCo o) List<>

+InActve(in Co, i, IntD}: String

= User = FollowController = Co-workingSpace = CO_Stuff<interface>
o oo o oo

o sung et o sung Kane:dug

i Sy e Sond Sesken ung

. s +Folowspacatnt spacos. useryiog || Covemara:sing

S L UoloSsacn Spacold S| | S

S, L QAR Sty Lo B +AsaRegost Doty g

Sres st e ot el et e)

st SOt oo Gt 1 10 g

—

S CO_Facilties

Type: Sting

= CoworkingSeating

Co_iD: i
Type: Siring
prce_per_one: Double
currency: Sting

count nt
PriccPoriodTypo: Siing
doscrplon: Sring
capaciy:Int

+ AddSeating(Request SeatingData): Srng

+ EdiSeatng(in Co_d. Int SealiglD): View

+ DeleleSeating(lnt Co.d, Int SealigiDY: Sting
+ GelAlSeatngint Co] List<Seating=

+ UpdataPrices{in Go_id It SeatingiD}. View
+InfctveSsating(in Co, i, nt SestinglD): Sting

+ Add{Requast FaciityData): Sting
+Ediint Go_ i, Int FaciityD)- View

+ Delete(in Go_ i, Int FaciityD): String
+ GetAlint Go_lo: Liste>

+Infctvollnl Co_i. Int FacityD): Srng

= cO_Equipments

+ Add{Roquast EquimentDatal Sting
+ Ediit Co_i, Int EquimentiD)- View

+ Delete(int Co. i Int EquimentiD}: Sting
+ GetAllint Co_lo: Liste>

+Inctve(int Go_i. Int EquimontD): Srng

S Booking

Gost: Doudle
Status: Sting

+ getBookingHistory(Userld) List<Booking>

+ delatsBooking(inl Co idnt SeaiingID: View,

+ getBookingForCoSpaceint Co_id List<Booking™
+ makeBooking(In userd, Int Ca_id Int SeatinglDyvoid
+ cancelBooking(Int userld, nt Ca ¢, It SeatngiD}vid

I

S Paymenteinterface>

Status: Sting

+ ChoosePaymeritatho(Booiing!D)
U

+ MakePayment(BookinglD,Request Datainputy
void
+ confimPayment(BockingDJvoid

ot

Greditcard

B cash

List<Paymentitethods>
+ MakcPaymentBooking Request Daaiou

tantmpaymentBookinaloied

ListePaymentifethods>
« MakePayment(BaokingID,Request Datanput)

+ confimPaymentBookingiD)void

image16.png
Payment

Id (PK) Bigint
Booking_id (FK) Bigint

Followers Reviews

d created_at

Coworking_Space

Id (PK)
name varchar
email varchar
password varchar
description varchar
governorate varchar
city varchar
street varchar
brandingStatus varchar
emailStatus varchar
created_at

Events_AttendingPeople

Id (PK) Bigint
coworking_Id(FK) Biglnt
event_id(FK)

user_id(FK) Bigint
status varchar
created_at Date

Offers

Coworking_OpeningTime

CoworkingFacilities

Id (PK)
coworking_Id(FK)
name
description
image

created_at

image17.png
V Alltsks v Cascadesoreing | Expand allg Collapseall | 3
@ Tide Startdate Due date

v Initiate 30/08/2019

gathering Team ... 01/08/2019 09/08/2019

Get project idea 12/08/2019 23/08/2019

Contact with Sup. 26/08/2019 30/08/2019

~ Analysis 08/10/2019

 Requirements Ga... 02/09/2019 30/09/2019

Interview 02/09/2019 16/09/2019

Online Survey 02/09/2019 16/09/2019

Ethnography 02/09/2019 30/09/2019

Observation 02/09/2019 30/09/2019

Document Functi... 02/09/2019 08/10/2019

~ Design 01/01/2020

Use cases Diagra... 11/10/2019 25/10/2019

System Context ... 25/10/2019 15/11/2019

Entity relationshi... 18/11/2019 03/12/2019

Class Diagram 21/11/2019 05/12/2019

Sequence Diagram 11/12/2019 26/12/2019

- Material D

) MOM

[l

Predecessors

o ByilderX - Design tool

Egypt Home

20201

Jan

,E Cubes « Noha m.

g Inivate

image18.png
€ ~Material D X | BuilderX - Design tool

www.wrike.com/wo ehtm

MY [Music [Download [Tutc) MOM Egypt Home

V Allsks v Coscadesorting | Expandally Collpseall | D3 £ % | | Cubes

ol [P Stare dare Due date Predecessors
Ciass Uiogrann Zunuzors vsnzzs
~ Sequence Diagram 11/12/2019 26/12/2019
® ~ Implementation 12/08/2020
~ sprint1 24112/2019 31/01/2020
® Web 24112/2019 31/01/2020
® ~ sprint 2 03/02/2020 30/04/2020
Web 03/02/2020 10/04/2020
v Dashboard 03/02/2020 29/04/2020
-~ ~ Test 11/08/2020
© Solve issues 15/06/2020 10/08/2020
& ~ Sprint3 04/05/2020 12/08/2020
© Android 04/05/2020 12/08/2020
Dashboard 04/05/2020 12/08/2020
Web 04/05/2020 12/08/2020
~ Prepare for discussion 11/08/2020
Documentation 29/07/2020 07/08/2020
Presentation 07/08/2020 11/08/2020
Demo 10/08/2020 11/08/2020

Add task H u

image1.png

